Given a binary tree, we install cameras on the nodes of the tree.
Each camera at a node can monitor its parent, itself, and its immediate children.
Calculate the minimum number of cameras needed to monitor all nodes of the tree.
Example 1:
Input: [0,0,null,0,0]
Output: 1
Explanation: One camera is enough to monitor all nodes if placed as shown.
Example 2:
Input: [0,0,null,0,null,0,null,null,0]
Output: 2
Explanation: At least two cameras are needed to monitor all nodes of the tree. The above image shows one of the valid configurations of camera placement.
Note:
The number of nodes in the given tree will be in the range [1, 1000].
Every node has value 0.
// Never put cameras on leaf nodes
class Solution {
boolean isCamera, isCovered;
int ans;
public int minCameraCover(TreeNode root) {
isCamera = false;
isCovered = false;
ans = 0;
helper(root);
if (!isCovered)
ans++;
return ans;
}
// Every node sends 2 informations to it's parents
// 1st -> Is this node a camera ?
// 2nd -> Is this node covered ?
public void helper(TreeNode root) {
if (root.left == null && root.right == null) {
isCamera = false;
isCovered = false;
}
// Variables for current root node
boolean isCoveredNode = false, isCameraNode = false;
if (root.left != null) {
helper(root.left);
// If left subtree top node is not covered
if (!isCovered) {
ans++;
isCameraNode = true;
isCoveredNode = true;
} else {
if (isCamera)
isCoveredNode = true;
}
}
if (root.right != null) {
helper(root.right);
// If right subtree top node is not covered
if (!isCovered) {
if (!isCameraNode)
ans++;
isCameraNode = true;
isCoveredNode = true;
} else {
if (isCamera)
isCoveredNode = true;
}
}
isCamera = isCameraNode;
isCovered = isCoveredNode;
}
}