The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
F(n)
0
1
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N, calculate F(N).
N
F(N)
Example 1:
Input: 2 Output: 1 Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3 Output: 2 Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4 Output: 3 Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N ≤ 30.
class Solution { public int fib(int N) { if (N == 0) return 0; int[][] x = { { 1, 1 }, { 1, 0 } }; // Identity matrix int[][] ans = { { 1, 0 }, { 0, 1 } }; while (N > 0) { if (N % 2 != 0) ans = multiply(ans, x); N = N / 2; x = multiply(x, x); } return ans[0][1]; } public int[][] multiply(int[][] x, int[][] y) { int[][] res = new int[2][2]; res[0][0] = x[0][0] * y[0][0] + x[0][1] * y[1][0]; res[0][1] = x[0][0] * y[0][1] + x[0][1] * y[1][1]; res[1][0] = x[1][0] * y[0][0] + x[1][1] * y[1][0]; res[1][1] = x[1][0] * y[0][1] + x[1][1] * y[1][1]; return res; } }
Last updated 4 years ago