Given an array A of integers, a ramp is a tuple (i, j) for which i < j and A[i] <= A[j]. The width of such a ramp is j - i.
Find the maximum width of a ramp in A. If one doesn't exist, return 0.
Example 1:
Input: [6,0,8,2,1,5]
Output: 4
Explanation:
The maximum width ramp is achieved at (i, j) = (1, 5): A[1] = 0 and A[5] = 5.
Example 2:
Input: [9,8,1,0,1,9,4,0,4,1]
Output: 7
Explanation:
The maximum width ramp is achieved at (i, j) = (2, 9): A[2] = 1 and A[9] = 1.
Note:
2 <= A.length <= 50000
0 <= A[i] <= 50000
classSolution {publicintmaxWidthRamp(int[] nums) {int n =nums.length;int[] rMax =newint[n]; rMax[n -1] = nums[n -1];for (int i = n -2; i >=0; i--) { rMax[i] =Math.max(rMax[i +1], nums[i]); }// The trick is that left pointer iterates over original array and right pointer// iterates over an array which stores maximum no. on the right for each index.int left =0, right =0;int ans =0;while (right < n) {// If item at 'left' index > all the elements [right,n)// then it cannot be used in our answerwhile (left < right && nums[left] > rMax[right]) { left++; } ans =Math.max(ans, right - left); right++; }return ans; }}