Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any number of times.
Each non-leaf node's value should be equal to the product of the values of it's children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input: A = [2, 4]
Output: 3
Explanation: We can make these trees: [2], [4], [4, 2, 2]
Example 2:
Input: A = [2, 4, 5, 10]
Output: 7
Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
Note:
1 <= A.length <= 1000.
2 <= A[i] <= 10 ^ 9.
/** * Sort the list A at first. Scan A from small element to bigger. * * DP equation: dp[i] = sum(dp[j] * dp[i / j]) * res = sum(dp[i]) with i, j, i / j in the list L */publicclassSolution {publicintnumFactoredBinaryTrees(int[] A) {long res =0L, mod = (long) 1e9+7;Arrays.sort(A);HashMap<Integer,Long> dp =newHashMap<>();for (int i =0; i <A.length; ++i) {// When tree only contains A[i] as root and no other nodedp.put(A[i],1L);// Checking smaller elements onlyfor (int j =0; j < i; ++j)if (A[i] %A[j] ==0)dp.put(A[i], (dp.get(A[i]) +dp.get(A[j]) *dp.getOrDefault(A[i] /A[j],0L)) % mod); res = (res +dp.get(A[i])) % mod; }return (int) res; }}