Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any number of times.
Each non-leaf node's value should be equal to the product of the values of it's children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input: A = [2, 4]
Output: 3
Explanation: We can make these trees: [2], [4], [4, 2, 2]
Example 2:
Input: A = [2, 4, 5, 10]
Output: 7
Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
Note:
1 <= A.length <= 1000.
2 <= A[i] <= 10 ^ 9.
/**
* Sort the list A at first. Scan A from small element to bigger.
*
* DP equation: dp[i] = sum(dp[j] * dp[i / j])
* res = sum(dp[i]) with i, j, i / j in the list L
*/
public class Solution {
public int numFactoredBinaryTrees(int[] A) {
long res = 0L, mod = (long) 1e9 + 7;
Arrays.sort(A);
HashMap<Integer, Long> dp = new HashMap<>();
for (int i = 0; i < A.length; ++i) {
// When tree only contains A[i] as root and no other node
dp.put(A[i], 1L);
// Checking smaller elements only
for (int j = 0; j < i; ++j)
if (A[i] % A[j] == 0)
dp.put(A[i], (dp.get(A[i]) + dp.get(A[j]) * dp.getOrDefault(A[i] / A[j], 0L)) % mod);
res = (res + dp.get(A[i])) % mod;
}
return (int) res;
}
}