In a given grid, each cell can have one of three values:
the value 0 representing an empty cell;
the value 1 representing a fresh orange;
the value 2 representing a rotten orange.
Every minute, any fresh orange that is adjacent (4-directionally) to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1 instead.
Example 1:
Input: [[2,1,1],[1,1,0],[0,1,1]]
Output: 4
Example 2:
Input: [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Note:
1 <= grid.length <= 10
1 <= grid[0].length <= 10
grid[i][j] is only 0, 1, or 2.
class Solution {
public int orangesRotting(int[][] grid) {
int totalOranges = 0;
Queue<int[]> q = new LinkedList<>();
for (int i = 0; i < grid.length; i++)
for (int j = 0; j < grid[i].length; j++) {
if (grid[i][j] == 2)
q.add(new int[] { i, j });
if (grid[i][j] == 1 || grid[i][j] == 2)
totalOranges++;
}
int[][] dir = { { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, -1 } };
int minutes = 0, rottenOranges = 0;
while (q.size() != 0) {
int size = q.size();
while (size-- > 0) {
int[] pos = q.poll();
for (int i = 0; i < 4; i++) {
int x = pos[0] + dir[i][0];
int y = pos[1] + dir[i][1];
if (x >= 0 && x < grid.length && y >= 0 && y < grid[x].length && grid[x][y] == 1) {
grid[x][y] = 2;
q.add(new int[] { x, y });
}
}
rottenOranges++;
}
if (q.size() != 0)
minutes++;
}
return rottenOranges == totalOranges ? minutes : -1;
}
}