Walls and Gates
You are given a m x n 2D grid initialized with these three possible values.
-1
- A wall or an obstacle.
0
- A gate.
INF
- Infinity means an empty room. We use the value 2^31 - 1 = 2147483647
to represent INF as you may assume that the distance to a gate is less than 2147483647
.
Fill each empty room with the distance to its nearest gate. If it is impossible to reach a Gate
, that room should remain filled with INF
Example
Example1
Input:
[[2147483647,-1,0,2147483647],[2147483647,2147483647,2147483647,-1],[2147483647,-1,2147483647,-1],[0,-1,2147483647,2147483647]]
Output:
[[3,-1,0,1],[2,2,1,-1],[1,-1,2,-1],[0,-1,3,4]]
Explanation:
the 2D grid is:
INF -1 0 INF
INF INF INF -1
INF -1 INF -1
0 -1 INF INF
the answer is:
3 -1 0 1
2 2 1 -1
1 -1 2 -1
0 -1 3 4
Example2
Input:
[[0,-1],[2147483647,2147483647]]
Output:
[[0,-1],[1,2]]
public class Solution {
public void wallsAndGates(int[][] rooms) {
Queue<int[]> q = new LinkedList<>();
for (int i = 0; i < rooms.length; i++) {
for (int j = 0; j < rooms[i].length; j++) {
if (rooms[i][j] == 0)
q.add(new int[] { i, j });
}
}
int[][] dir = { { 0, 1 }, { -1, 0 }, { 1, 0 }, { 0, -1 } };
int dist = 1;
while (q.size() != 0) {
int size = q.size();
while (size-- > 0) {
int[] node = q.poll();
for (int i = 0; i < 4; i++) {
int newX = node[0] + dir[i][0];
int newY = node[1] + dir[i][1];
if (newX >= 0 && newX < rooms.length && newY >= 0 && newY < rooms[newX].length && rooms[newX][newY] == Integer.MAX_VALUE) {
rooms[newX][newY] = dist;
q.add(new int[] { newX, newY });
}
}
}
dist++;
}
}
}
Last updated