Given an array arr[0 … n-1] containing n positive integers, a subsequence of arr[] is called Bitonic if it is first increasing, then decreasing. Write a function that takes an array as argument and returns the length of the longest bitonic subsequence.
A sequence, sorted in increasing order is considered Bitonic with the decreasing part as empty. Similarly, decreasing order sequence is considered Bitonic with the increasing part as empty.
Examples:
Input arr[] = {1, 11, 2, 10, 4, 5, 2, 1};
Output: 6 (A Longest Bitonic Subsequence of length 6 is 1, 2, 10, 4, 2, 1)
Input arr[] = {12, 11, 40, 5, 3, 1}
Output: 5 (A Longest Bitonic Subsequence of length 5 is 12, 11, 5, 3, 1)
Input arr[] = {80, 60, 30, 40, 20, 10}
Output: 5 (A Longest Bitonic Subsequence of length 5 is 80, 60, 30, 20, 10)
classSolution {publicintlengthOfBitonic(int[] nums) {if (nums.length==0)return0;int dpForward[] =newint[nums.length];int dpBackward[] =newint[nums.length]; dpForward[0] =1; dpBackward[nums.length-1] =1;for (int i =1; i <nums.length; i++) { dpForward[i] =1;for (int j =0; j < i; j++) {if (nums[j] < nums[i]) dpForward[i] =Math.max(dpForward[i], dpForward[j] +1); } }for (int i =nums.length-2; i >=0; i--) { dpBackward[i] =1;for (int j = i +1; j <nums.length; j++) {if (nums[i] > nums[j]) dpBackward[i] =Math.max(dpBackward[i], dpBackward[j] +1); } }int max =0;for (int i =0; i <nums.length; i++) max =Math.max(max, dpForward[i] + dpBackward[i] -1);return max; }}