Evaluate Expression To True
Given an expression, A, with operands and operators (OR , AND , XOR), in how many ways can you evaluate the expression to true, by grouping in different ways?
Operands are only true and false.
Return the number of ways to evaluate the expression modulo 10^3 + 3.
Input Format:
The first and the only argument of input will contain a string, A.
The string A, may contain these characters:
'|' will represent or operator
'&' will represent and operator
'^' will represent xor operator
'T' will represent true operand
'F' will false
Output:
Return an integer, representing the number of ways to evaluate the string.
Constraints:
1 <= length(A) <= 150
Example:
Input 1:
A = "T|F"
Output 1:
1
Explanation 1:
The only way to evaluate the expression is:
=> (T|F) = T
Input 2:
A = "T^T^F"
Output 2:
0
Explanation 2:
There is no way to evaluate A to a true statement.
public class Solution {
// The recurrence relation will look like the following :
// some rules =>
// or operator:
// T|F = T
// T|T = T
// F|T = T
// F|F = F
// and operator:
// T&F = F
// T&T = T
// F&T = F
// F&F = F
// x-or operator
// T^T = F
// T^F = T
// F^T = T
// F^F = F
public int cnttrue(String s) {
pair[][] dp = new pair[s.length()][s.length()];
pair ways = getcount(s, 0, s.length() - 1, dp);
return ways.tc;
}
static class pair {
int tc;
int fc;
pair(int tc, int fc) {
this.tc = tc;
this.fc = fc;
}
}
// Consider start and end as 2 pointers on a string
public static pair getcount(String s, int st, int end, pair[][] dp) {
if (st == end) {
if (s.charAt(st) == 'T')
return new pair(1, 0);
else
return new pair(0, 1);
} else if (dp[st][end] != null)
return dp[st][end];
else {
int tc = 0; // true count
int fc = 0; // false count
// Putting a "Seprator" and solving seprately one by one
for (int i = st + 1; i < end; i += 2) {
char op = s.charAt(i);
pair lp = getcount(s, st, i - 1, dp);
pair rp = getcount(s, i + 1, end, dp);
int t = 0;
int f = 0;
if (op == '|') {
t = ((lp.tc * rp.tc) % 1003 + (lp.fc * rp.tc) % 1003 + (lp.tc * rp.fc) % 1003) % 1003;
f = (lp.fc * rp.fc) % 1003;
} else if (op == '&') {
t = (lp.tc * rp.tc) % 1003;
f = ((lp.fc * rp.fc) % 1003 + (lp.fc * rp.tc) % 1003 + (lp.tc * rp.fc) % 1003) % 1003;
} else {
t = ((lp.fc * rp.tc) % 1003 + (lp.tc * rp.fc) % 1003) % 1003;
f = ((lp.tc * rp.tc) % 1003 + (lp.fc * rp.fc) % 1003) % 1003;
}
tc = (tc + t) % 1003;
fc = (fc + f) % 1003;
}
pair p = new pair(tc, fc);
dp[st][end] = p;
return p;
}
}
}
Last updated