Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
classSolution {publicintfindNumberOfLIS(int[] nums) {if (nums.length==0)return0;int dp[] =newint[nums.length];int count[] =newint[nums.length];int max =1; dp[0] =1; count[0] =1;// dp[i] -> length of LIS upto this point(including this point)for (int i =1; i <nums.length; i++) { dp[i] =1;// base casefor (int j =0; j < i; j++) {if (nums[j] < nums[i]) // For increasing subsequence dp[i] =Math.max(dp[i], dp[j] +1); } max =Math.max(dp[i], max);if (dp[i] ==1) count[i] =1;else {for (int j =0; j < i; j++) {if (nums[j] < nums[i] && dp[i] == dp[j] +1) count[i] += count[j]; } } }int ans =0;for (int i =0; i <dp.length; i++) {if (max == dp[i]) { ans += count[i]; } }return ans; }}