Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarray of A.
Since the answer may be large, return the answer modulo 10^9 + 7.
Example 1:
Input: [3,1,2,4]
Output: 17
Explanation: Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1. Sum is 17.
Note:
1 <= A.length <= 30000
1 <= A[i] <= 30000
class Solution {
public int sumSubarrayMins(int[] A) {
// We will maintain an increasing stack
Deque<Integer> stack = new LinkedList<>();
int[] leftDistance = new int[A.length];
int[] rightDistance = new int[A.length];
for (int i = 0; i < A.length; i++) {
// use ">=" to deal with duplicate elements
while (!stack.isEmpty() && A[stack.peek()] >= A[i])
stack.pop();
leftDistance[i] = stack.isEmpty() ? (i + 1) : (i - stack.peek());
stack.push(i);
}
stack.clear();
for (int i = A.length - 1; i >= 0; i--) {
while (!stack.isEmpty() && A[stack.peek()] > A[i])
stack.pop();
rightDistance[i] = stack.isEmpty() ? (A.length - i) : (stack.peek() - i);
stack.push(i);
}
int ans = 0;
int mod = 1000000007;
for (int i = 0; i < A.length; i++)
// Total number of subarrays with A[i] as min element
ans = (ans + A[i] * leftDistance[i] * rightDistance[i]) % mod;
return ans;
}
}