Unique Binary Search Trees II
Given an integer n
, generate all structurally unique BST's (binary search trees) that store values 1 ... n.
Example:
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Constraints:
0 <= n <= 8
public class Solution {
public static List<TreeNode> generateTrees(int N) {
List<TreeNode>[] result = new List[N + 1];
// result[i] -> stores BSTs with first i nodes
result[0] = new ArrayList<TreeNode>();
if (N == 0)
return result[0];
// Adding null for calulations later
result[0].add(null);
// Starting with 1 node
for (int n = 1; n <= N; n++) {
result[n] = new ArrayList<TreeNode>();
// Consider all the nodes from 1 -> n, as root
for (int j = 1; j <= n; j++) {
// Forming all the combinations with different left and right childs
for (TreeNode nodeL : result[j - 1]) {
for (TreeNode nodeR : result[n - j]) {
TreeNode node = new TreeNode(j);
// The left tree will have correct stucture and values
node.left = nodeL;
// But the right tree will have correct structure but
// but all the values will be offset by "j"
node.right = clone(nodeR, j);
result[n].add(node);
}
}
}
}
return result[N];
}
private static TreeNode clone(TreeNode n, int offset) {
if (n == null) {
return null;
}
TreeNode node = new TreeNode(n.val + offset);
node.left = clone(n.left, offset);
node.right = clone(n.right, offset);
return node;
}
}
Last updated