We have a list of bus routes. Each routes[i] is a bus route that the i-th bus repeats forever. For example if routes[0] = [1, 5, 7], this means that the first bus (0-th indexed) travels in the sequence 1->5->7->1->5->7->1->... forever.
We start at bus stop S (initially not on a bus), and we want to go to bus stop T. Travelling by buses only, what is the least number of buses we must take to reach our destination? Return -1 if it is not possible.
Example:
Input:
routes = [[1, 2, 7], [3, 6, 7]]
S = 1
T = 6
Output: 2
Explanation:
The best strategy is take the first bus to the bus stop 7, then take the second bus to the bus stop 6.
Constraints:
1 <= routes.length <= 500.
1 <= routes[i].length <= 10^5.
0 <= routes[i][j] < 10 ^ 6.
class Solution {
public int numBusesToDestination(int[][] routes, int S, int T) {
if (S == T)
return 0;
// Graph of cycles
Set<Integer>[] graph = new HashSet[routes.length];
for (int i = 0; i < routes.length; i++)
graph[i] = new HashSet<>();
// dest -> cycle list
HashMap<Integer, Set<Integer>> map = new HashMap<>();
for (int i = 0; i < routes.length; i++) {
for (int x : routes[i]) {
if (!map.containsKey(x))
map.put(x, new HashSet<>());
for (int cycle : map.get(x)) {
if (cycle != i) {
graph[i].add(cycle);
graph[cycle].add(i);
}
}
map.get(x).add(i);
}
}
int count = 1;
boolean[] visited = new boolean[routes.length];
Queue<Integer> q = new LinkedList<>();
for (int x : map.get(S))
q.add(x);
while (q.size() != 0) {
int size = q.size();
while (size-- > 0) {
int cycle = q.poll();
visited[cycle] = true;
if (map.get(T).contains(cycle))
return count;
for (int neighborCycle : graph[cycle])
if (!visited[neighborCycle])
q.add(neighborCycle);
}
count++;
}
return -1;
}
}