On a 2-dimensional grid, there are 4 types of squares:
1 represents the starting square. There is exactly one starting square.
2 represents the ending square. There is exactly one ending square.
0 represents empty squares we can walk over.
-1 represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note:
1 <= grid.length * grid[0].length <= 20
class Solution {
int[][] directions = { { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, -1 } };
public boolean isPossible(int grid[][], boolean[][] visited, int x, int y) {
if (x >= 0 && x < grid.length && y >= 0 && y < grid[x].length && !visited[x][y] && grid[x][y] != -1)
return true;
return false;
}
int ans = 0;
public int uniquePathsIII(int[][] grid) {
int rowStart = 0, colStart = 0, rowEnd = 0, colEnd = 0, count = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) {
rowStart = i;
colStart = j;
} else if (grid[i][j] == 2) {
rowEnd = i;
colEnd = j;
} else if (grid[i][j] == 0)
count++;
}
}
boolean[][] visited = new boolean[grid.length][grid[0].length];
backtrack(grid, visited, rowStart, colStart, rowEnd, colEnd, 0, count);
return ans;
}
public void backtrack(int[][] grid, boolean[][] visited, int x, int y, int xEnd, int yEnd, int currentCount,
int totalCount) {
if (isPossible(grid, visited, x, y)) {
if (x == xEnd && y == yEnd) {
if (currentCount == totalCount)
ans++;
} else {
visited[x][y] = true;
for (int i = 0; i < 4; i++) {
backtrack(grid, visited, x + directions[i][0], y + directions[i][1], xEnd, yEnd,
currentCount + (grid[x][y] == 0 ? 1 : 0), totalCount);
}
visited[x][y] = false;
}
}
}
}