You have d dice, and each die has f faces numbered 1, 2, ..., f.
Return the number of possible ways (out of fd total ways) modulo 10^9 + 7 to roll the dice so the sum of the face up numbers equals target.
Example 1:
Input: d = 1, f = 6, target = 3
Output: 1
Explanation:
You throw one die with 6 faces. There is only one way to get a sum of 3.
Example 2:
Input: d = 2, f = 6, target = 7
Output: 6
Explanation:
You throw two dice, each with 6 faces. There are 6 ways to get a sum of 7:
1+6, 2+5, 3+4, 4+3, 5+2, 6+1.
Example 3:
Input: d = 2, f = 5, target = 10
Output: 1
Explanation:
You throw two dice, each with 5 faces. There is only one way to get a sum of 10: 5+5.
Example 4:
Input: d = 1, f = 2, target = 3
Output: 0
Explanation:
You throw one die with 2 faces. There is no way to get a sum of 3.
Example 5:
Input: d = 30, f = 30, target = 500
Output: 222616187
Explanation:
The answer must be returned modulo 10^9 + 7.
Constraints:
1 <= d, f <= 30
1 <= target <= 1000
// O(d*target) Space & O(d*f*target) TimeclassSolution {publicintnumRollsToTarget(int d,int f,int target) {int MOD =1000000007;int[][] dp =newint[d +1][target +1]; dp[0][0] =1;// dp[i][j] -> how many ways can i dices sum up to j;for (int i =1; i <= d; i++) {for (int j =1; j <= target; j++) {if (j > i * f)continue; // If j is larger than largest possible sum of i dices, there is no possible// ways.elsefor (int currentFace =1; currentFace <= f && currentFace <= j; currentFace++) dp[i][j] = (dp[i][j] + dp[i -1][j - currentFace]) % MOD; } }return dp[d][target]; }}// O(target) Space SolutionclassSolution {publicintnumRollsToTarget(int d,int f,int target) {int MOD =1000000007;int[] dp =newint[target +1]; dp[0] =1;// dp[j] -> how many ways to get sum up to j;for (int i =1; i <= d; i++) {int[] dp2 =newint[target +1];for (int j =1; j <= target; j++) {if (j > i * f)continue; // If j is larger than largest possible sum of i dices, there is no possible// ways.elsefor (int currentFace =1; currentFace <= f && currentFace <= j; currentFace++) dp2[j] = (dp2[j] + dp[j - currentFace]) % MOD; } dp = dp2; }return dp[target]; }}