Given a square grid of integers arr, a falling path with non-zero shifts is a choice of exactly one element from each row of arr, such that no two elements chosen in adjacent rows are in the same column.
Return the minimum sum of a falling path with non-zero shifts.
Example 1:
Input: arr = [[1,2,3],[4,5,6],[7,8,9]]
Output: 13
Explanation:
The possible falling paths are:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
The falling path with the smallest sum is [1,5,7], so the answer is 13.
Constraints:
1 <= arr.length == arr[i].length <= 200
-99 <= arr[i][j] <= 99
classSolution {publicintminFallingPathSum(int[][] arr) {// Bottom up approachint minSum =Integer.MAX_VALUE, secondMinSum =Integer.MAX_VALUE;int index =-1;// Find 2 smallest sum path sum in each levelfor (int i =arr.length-1; i >=0; i--) {int tempSmall =Integer.MAX_VALUE, tempSecondSmall =Integer.MAX_VALUE;int t =-1;for (int j =0; j < arr[i].length; j++) {int currentSum = arr[i][j];if (i !=arr.length-1) {if (j != index) currentSum += minSum;else currentSum += secondMinSum; }if (currentSum < tempSmall) { tempSecondSmall = tempSmall; tempSmall = currentSum; t = j; } elseif (currentSum < tempSecondSmall) tempSecondSmall = currentSum; } minSum = tempSmall; secondMinSum = tempSecondSmall; index = t; }return minSum; }}