Given a circular arrayC of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
class Solution {
// Max ( Non circular max sum + circular max sum )
public int maxSubarraySumCircular(int[] A) {
int nonCircularSum = kadaneMaxSum(A);
int totalSum = 0;
for (int i = 0; i < A.length; i++) {
totalSum += A[i];
A[i] = -A[i];
}
// When we invert the array the min subarray becomes the max subarray
// and kadane will return this max subarray sum
// therefore max circular sum will be total sum -(-kadane) => sum+kadane
int circularSum = totalSum + kadaneMaxSum(A);
if (circularSum == 0)
return nonCircularSum;
return Math.max(circularSum, nonCircularSum);
}
int kadaneMaxSum(int[] A) {
int currentSum = A[0];
int maxSum = A[0];
for (int i = 1; i < A.length; i++) {
if (currentSum < 0)
currentSum = 0;
currentSum = A[i] + currentSum;
maxSum = Math.max(maxSum, currentSum);
}
return maxSum;
}
}