Given a circular arrayC of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
classSolution {// Max ( Non circular max sum + circular max sum )publicintmaxSubarraySumCircular(int[] A) {int nonCircularSum =kadaneMaxSum(A);int totalSum =0;for (int i =0; i <A.length; i++) { totalSum +=A[i];A[i] =-A[i]; }// When we invert the array the min subarray becomes the max subarray// and kadane will return this max subarray sum// therefore max circular sum will be total sum -(-kadane) => sum+kadaneint circularSum = totalSum +kadaneMaxSum(A);if (circularSum ==0)return nonCircularSum;returnMath.max(circularSum, nonCircularSum); }intkadaneMaxSum(int[] A) {int currentSum =A[0];int maxSum =A[0];for (int i =1; i <A.length; i++) {if (currentSum <0) currentSum =0; currentSum =A[i] + currentSum; maxSum =Math.max(maxSum, currentSum); }return maxSum; }}