There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
class Solution {
public double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length;
int n = B.length;
if (m > n) { // to ensure m<=n
int[] temp = A; A = B; B = temp;
int tmp = m; m = n; n = tmp;
}
// The Binary search is of partitions
int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
while (iMin <= iMax) {
int i = (iMin + iMax) / 2;
int j = halfLen - i;
if (i < iMax && B[j-1] > A[i]){
iMin = i + 1; // i is too small
}
else if (i > iMin && A[i-1] > B[j]) {
iMax = i - 1; // i is too big
}
else { // i is perfect
int maxLeft = 0;
if (i == 0)
maxLeft = B[j-1];
else if (j == 0)
maxLeft = A[i-1];
else
maxLeft = Math.max(A[i-1], B[j-1]);
if ( (m + n) % 2 == 1 )
return maxLeft;
int minRight = 0;
if (i == m)
minRight = B[j];
else if (j == n)
minRight = A[i];
else
minRight = Math.min(B[j], A[i]);
return (maxLeft + minRight) / 2.0;
}
}
return 0.0;
}
}