A sorted list A contains 1, plus some number of primes. Then, for every p < q in the list, we consider the fraction p/q.
What is the K-th smallest fraction considered? Return your answer as an array of ints, where answer[0] = p and answer[1] = q.
Examples:
Input: A = [1, 2, 3, 5], K = 3
Output: [2, 5]
Explanation:
The fractions to be considered in sorted order are:
1/5, 1/3, 2/5, 1/2, 3/5, 2/3.
The third fraction is 2/5.
Input: A = [1, 7], K = 1
Output: [1, 7]
Note:
A will have length between 2 and 2000.
Each A[i] will be between 1 and 30000.
K will be between 1 and A.length * (A.length - 1) / 2.
class Solution {
// Similar to
// https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/
public int[] kthSmallestPrimeFraction(int[] A, int K) {
int n = A.length;
// Min heap
// Adding smallest fraction with each digit at numerator
PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> A[a[0]] * A[b[1]] - A[b[0]] * A[a[1]]);
for (int i = 0; i < n - 1; i++)
pq.add(new int[] { i, n - 1 });
while (K > 1) {
int[] top = pq.poll();
top[1]--;
if (top[1] > top[0])
pq.add(top);
K--;
}
return new int[] { A[pq.peek()[0]], A[pq.peek()[1]] };
}
}
// Binary Search
public class Solution {
private int[] countPairs(int[] A, double x) {
// p,q hold the biggest fraction <= x
int count = 0, n = A.length, p = 0, q = 0;
double max = 0.0;
for (int i = 0, j = 0; i < n; i++) {
while (j < i && (double) A[j] / (double) A[i] < x)
j++;
if (j > 0) {
double fraction = (double) A[j - 1] / (double) A[i];
if (max < fraction) {
max = fraction;
p = A[j - 1];
q = A[i];
}
}
count += j;
}
return new int[] { count, p, q };
}
public int[] kthSmallestPrimeFraction(int[] A, int K) {
int n = A.length, min = A[0], max = A[n - 1], p = 0, q = 0;
double lo = (double) min / (double) max, hi = 1.0;
while (lo < hi) {
double mid = (lo + hi) / 2.0;
// Count number of fractions <= mid
int[] count = countPairs(A, mid);
if (count[0] == K) {
p = count[1];
q = count[2];
break;
}
if (count[0] < K)
lo = mid;
else
hi = mid;
}
return new int[] { p, q };
}
}