Given an array, find the subarray (containing at least k numbers) which has the largest sum.
Examples:
Input : arr[] = {-4, -2, 1, -3}
k = 2
Output : -1
The sub array is {-2, 1}
Input : arr[] = {1, 1, 1, 1, 1, 1}
k = 2
Output : 6
The sub array is {1, 1, 1, 1, 1, 1}
public class Solution {
public int maxSumWithK(int a[], int n, int k) {
// maxSum[i] is going to store maximum sum
// till index i such that a[i] is part of the sum.
int maxSum[] = new int[n];
maxSum[0] = a[0];
// We use Kadane's algorithm to fill maxSum[]
int curr_max = a[0];
for (int i = 1; i < n; i++) {
curr_max = Math.max(a[i], curr_max + a[i]);
maxSum[i] = curr_max;
}
// Sum of first k elements
int sum = 0;
for (int i = 0; i < k; i++)
sum += a[i];
// Use the concept of sliding window
int result = sum;
for (int i = k; i < n; i++) {
sum = sum + a[i] - a[i - k];
result = Math.max(result, sum);
// Include maximum sum till [i-k] also
// if it increases overall max.
result = Math.max(result, sum + maxSum[i - k]);
}
return result;
}
}