Given a m x n matrix mat and an integer threshold. Return the maximum side-length of a square with a sum less than or equal to threshold or return 0 if there is no such square.
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4
Output: 2
Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1
Output: 0
Example 3:
Input: mat = [[1,1,1,1],[1,0,0,0],[1,0,0,0],[1,0,0,0]], threshold = 6
Output: 3
Example 4:
Input: mat = [[18,70],[61,1],[25,85],[14,40],[11,96],[97,96],[63,45]], threshold = 40184
Output: 2
Constraints:
1 <= m, n <= 300
m == mat.length
n == mat[i].length
0 <= mat[i][j] <= 10000
0 <= threshold <= 10^5
classSolution {publicintmaxSideLength(int[][] mat,int threshold) {int n =mat.length;int m = mat[0].length;int[][] prefixSum =newint[n +1][m +1];int max =0;for (int i =0; i < n; i++) {for (int j =0; j < m; j++) { prefixSum[i +1][j +1] = prefixSum[i +1][j] + prefixSum[i][j +1] - prefixSum[i][j] + mat[i][j];// If we consider a square with bottom-right at (i,j)// now if this square's edge length needs to be > max, for it to be a better// answerif (i - max >=0&& j - max >=0&& prefixSum[i +1][j +1] - prefixSum[i - max][j +1]- prefixSum[i +1][j - max] + prefixSum[i - max][j - max] <= threshold) max +=1; } }return max; }}