Given a binary tree, write a function to get the maximum width of the given tree. The width of a tree is the maximum width among all levels. The binary tree has the same structure as a full binary tree, but some nodes are null.
The width of one level is defined as the length between the end-nodes (the leftmost and right most non-null nodes in the level, where the null nodes between the end-nodes are also counted into the length calculation.
Example 1:
Input:
1
/ \
3 2
/ \ \
5 3 9
Output: 4
Explanation: The maximum width existing in the third level with the length 4 (5,3,null,9).
Example 2:
Input:
1
/
3
/ \
5 3
Output: 2
Explanation: The maximum width existing in the third level with the length 2 (5,3).
Example 3:
Input:
1
/ \
3 2
/
5
Output: 2
Explanation: The maximum width existing in the second level with the length 2 (3,2).
Example 4:
Input:
1
/ \
3 2
/ \
5 9
/ \
6 7
Output: 8
Explanation:The maximum width existing in the fourth level with the length 8 (6,null,null,null,null,null,null,7).
Note: Answer will in the range of 32-bit signed integer.
classSolution {publicintwidthOfBinaryTree(TreeNode root) {if (root ==null)return0;Queue<TreeNode> q =newLinkedList<TreeNode>();Map<TreeNode,Integer> m =newHashMap<TreeNode,Integer>();q.offer(root);m.put(root,1);int curW =0;int maxW =0;while (!q.isEmpty()) {int size =q.size();int start =0;int end =0;for (int i =0; i < size; i++) {TreeNode node =q.poll();if (i ==0) start =m.get(node);if (i == size -1) end =m.get(node);if (node.left!=null) {m.put(node.left,m.get(node) *2);q.offer(node.left); }if (node.right!=null) {m.put(node.right,m.get(node) *2+1);q.offer(node.right); } } curW = end - start +1; maxW =Math.max(curW, maxW); }return maxW; }}