Kth Smallest Element in a BST
Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up: What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Constraints:
The number of elements of the BST is between
1
to10^4
.You may assume
k
is always valid,1 ≤ k ≤ BST's total elements
.
class Solution {
int count = 0, result = Integer.MIN_VALUE;
public int kthSmallest(TreeNode root, int k) {
traverse(root, k);
return result;
}
public void traverse(TreeNode root, int k) {
if (root == null)
return;
traverse(root.left, k);
count++;
if (count == k)
result = root.val;
if (count < k)
traverse(root.right, k);
}
}
Last updated