Given a binary string s (a string consisting only of '0's and '1's), we can split s into 3 non-empty strings s1, s2, s3 (s1+ s2+ s3 = s).
Return the number of ways s can be split such that the number of characters '1' is the same in s1, s2, and s3.
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: s = "10101"
Output: 4
Explanation: There are four ways to split s in 3 parts where each part contain the same number of letters '1'.
"1|010|1"
"1|01|01"
"10|10|1"
"10|1|01"
Example 2:
Input: s = "1001"
Output: 0
Example 3:
Input: s = "0000"
Output: 3
Explanation: There are three ways to split s in 3 parts.
"0|0|00"
"0|00|0"
"00|0|0"
Example 4:
Input: s = "100100010100110"
Output: 12
Constraints:
3 <= s.length <= 10^5
s[i] is '0' or '1'.
classSolution {long mod =1_000_000_007;publiclonglength(String s,int index,int sum) {if (index ==0) {boolean found =false;long len =0, count =0;while (index <s.length()) {if (s.charAt(index) =='1') {if (found)break; count++;if (count == sum) found =true; }if (found) len++; index++; }return len; } else {boolean found =false;int len =0, count =0;while (index >=0) {if (s.charAt(index) =='1') {if (found)break; count++;if (count == sum) found =true; }if (found) len++; index--; }return len; } }publicintnumWays(String s) {int nums =0;for (char c :s.toCharArray())if (c =='1') nums++;if (nums %3!=0)return0;if (nums ==0) {long len =s.length() -2;return (int) ((len * (len +1L) /2L) % mod); }// Find out the 4 positions we need (because 2 are fixed i.e start & end of s1 & s3 resp.)return (int) ((length(s,0, nums /3)*length(s,s.length() -1, nums /3)) % mod); }}