Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
Follow up:If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int windowSum = 0, start = 0, end = 0;
int minLen = Integer.MAX_VALUE;
while (end < nums.length) {
windowSum += nums[end];
if (windowSum >= s) {
while (start <= end && windowSum - nums[start] >= s) {
windowSum -= nums[start];
start++;
}
minLen = Math.min(minLen, end - start + 1);
windowSum -= nums[start];
start++;
}
end++;
}
return minLen == Integer.MAX_VALUE ? 0 : minLen;
}
}
Last updated