Given a binary treeroot, the task is to return the maximum sum of all keys of any sub-tree which is also a Binary Search Tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [1,4,3,2,4,2,5,null,null,null,null,null,null,4,6]
Output: 20
Explanation: Maximum sum in a valid Binary search tree is obtained in root node with key equal to 3.
Example 2:
Input: root = [4,3,null,1,2]
Output: 2
Explanation: Maximum sum in a valid Binary search tree is obtained in a single root node with key equal to 2.
Example 3:
Input: root = [-4,-2,-5]
Output: 0
Explanation: All values are negatives. Return an empty BST.
Example 4:
Input: root = [2,1,3]
Output: 6
Example 5:
Input: root = [5,4,8,3,null,6,3]
Output: 7
Constraints:
The given binary tree will have between 1 and 40000 nodes.
Each node's value is between [-4 * 10^4 , 4 * 10^4].
classSolution {int currSum, maxSum;int min, max;publicbooleancheckBST(TreeNode root) {if (root.left==null&&root.right==null) { currSum = min = max =root.val; maxSum =Math.max(maxSum,root.val);returntrue; }int leftSum =0, lowerLimit =Integer.MAX_VALUE;boolean isBST =true;if (root.left!=null) {boolean leftAns =checkBST(root.left);if (!leftAns || max >=root.val) isBST =false; leftSum = currSum; lowerLimit = min; }int rightSum =0, upperLimit =Integer.MIN_VALUE;if (root.right!=null) {boolean rightAns =checkBST(root.right);if (!rightAns || min <=root.val) isBST =false; rightSum = currSum; upperLimit = max; }if (!isBST)returnfalse;// Setting max sum currSum = leftSum +root.val+ rightSum; maxSum =Math.max(maxSum, currSum);// Setting the upper and lower limits of this BST min =Math.min(lowerLimit,root.val); max =Math.max(upperLimit,root.val);returntrue; }publicintmaxSumBST(TreeNode root) { currSum = maxSum =0;checkBST(root);return maxSum; }}