Given a binary treeroot, the task is to return the maximum sum of all keys of any sub-tree which is also a Binary Search Tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [1,4,3,2,4,2,5,null,null,null,null,null,null,4,6]
Output: 20
Explanation: Maximum sum in a valid Binary search tree is obtained in root node with key equal to 3.
Example 2:
Input: root = [4,3,null,1,2]
Output: 2
Explanation: Maximum sum in a valid Binary search tree is obtained in a single root node with key equal to 2.
Example 3:
Input: root = [-4,-2,-5]
Output: 0
Explanation: All values are negatives. Return an empty BST.
Example 4:
Input: root = [2,1,3]
Output: 6
Example 5:
Input: root = [5,4,8,3,null,6,3]
Output: 7
Constraints:
The given binary tree will have between 1 and 40000 nodes.
Each node's value is between [-4 * 10^4 , 4 * 10^4].
class Solution {
int currSum, maxSum;
int min, max;
public boolean checkBST(TreeNode root) {
if (root.left == null && root.right == null) {
currSum = min = max = root.val;
maxSum = Math.max(maxSum, root.val);
return true;
}
int leftSum = 0, lowerLimit = Integer.MAX_VALUE;
boolean isBST = true;
if (root.left != null) {
boolean leftAns = checkBST(root.left);
if (!leftAns || max >= root.val)
isBST = false;
leftSum = currSum;
lowerLimit = min;
}
int rightSum = 0, upperLimit = Integer.MIN_VALUE;
if (root.right != null) {
boolean rightAns = checkBST(root.right);
if (!rightAns || min <= root.val)
isBST = false;
rightSum = currSum;
upperLimit = max;
}
if (!isBST)
return false;
// Setting max sum
currSum = leftSum + root.val + rightSum;
maxSum = Math.max(maxSum, currSum);
// Setting the upper and lower limits of this BST
min = Math.min(lowerLimit, root.val);
max = Math.max(upperLimit, root.val);
return true;
}
public int maxSumBST(TreeNode root) {
currSum = maxSum = 0;
checkBST(root);
return maxSum;
}
}