Last updated
Last updated
Given a rows * columns
matrix mat
of ones and zeros, return how many submatrices have all ones.
Example 1:
Example 2:
Example 3:
Example 4:
Constraints:
1 <= rows <= 150
1 <= columns <= 150
0 <= mat[i][j] <= 1
Input: mat = [[1,0,1],
[1,1,0],
[1,1,0]]
Output: 13
Explanation:
There are 6 rectangles of side 1x1.
There are 2 rectangles of side 1x2.
There are 3 rectangles of side 2x1.
There is 1 rectangle of side 2x2.
There is 1 rectangle of side 3x1.
Total number of rectangles = 6 + 2 + 3 + 1 + 1 = 13.
Input: mat = [[0,1,1,0],
[0,1,1,1],
[1,1,1,0]]
Output: 24
Explanation:
There are 8 rectangles of side 1x1.
There are 5 rectangles of side 1x2.
There are 2 rectangles of side 1x3.
There are 4 rectangles of side 2x1.
There are 2 rectangles of side 2x2.
There are 2 rectangles of side 3x1.
There is 1 rectangle of side 3x2.
Total number of rectangles = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24.
Input: mat = [[1,1,1,1,1,1]]
Output: 21
Input: mat = [[1,0,1],[0,1,0],[1,0,1]]
Output: 5
import java.util.*;
class Solution {
public int numSubmat(int[][] mat) {
int M = mat.length, N = mat[0].length;
int count = 0;
int[] hist = new int[N];
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j)
hist[j] = (mat[i][j] == 0 ? 0 : hist[j] + 1);
count += helper(hist);
}
return count;
}
private int helper(int[] hist) {
// Actually sum[i] means the number of submatrices with the column "i" as the
// right border, which is exactly equal to the rectangle area.
int[] sum = new int[hist.length];
Deque<Integer> st = new LinkedList<>();
for (int i = 0; i < hist.length; ++i) {
// Maintaining strictly decreasing stack
while (!st.isEmpty() && hist[st.peek()] >= hist[i])
st.pop();
// If stack is not empty, meaning: there is a shorter column which breaks our
// road. Now, the number of metrics can form is sum[i] += A[i] * (i - preIndex).
// And plus, we can form a extend submetrics with that previous shorter column
// sum[preIndex].
if (!st.isEmpty()) {
int preIndex = st.peek();
sum[i] = sum[preIndex];
sum[i] += hist[i] * (i - preIndex);
}
// If stack is empty, meaning: all previous columns has more/equal ones than
// current column. So, the number of metrics can form is simply A[i] * (i + 1);
// (0-index)
else
sum[i] = hist[i] * (i + 1);
st.push(i);
}
int count = 0;
for (int s : sum)
count += s;
return count;
}
}