Given an array of n distinct elements, find the minimum number of swaps required to sort the array.
Examples:
Input : {4, 3, 2, 1}
Output : 2
Explanation : Swap index 0 with 3 and 1 with 2 to
form the sorted array {1, 2, 3, 4}.
Input : {1, 5, 4, 3, 2}
Output : 2
This can be easily done by visualizing the problem as a graph. We will have n nodes and an edge directed from node i to node j if the element at i’th index must be present at j’th index in the sorted array.
Graph for {4, 3, 2, 1}
The graph will now contain many non-intersecting cycles. Now a cycle with 2 nodes will only require 1 swap to reach the correct ordering, similarly a cycle with 3 nodes will only require 2 swap to do so.
class Solution {
static class Pair {
int v, i;
Pair(int v, int i) {
this.v = v;
this.i = i;
}
}
public int minSwaps(int[] arr, int N) {
Pair[] copy = new Pair[N];
for (int i = 0; i < N; i++)
copy[i] = new Pair(arr[i], i);
Arrays.sort(copy, (a, b) -> a.v - b.v);
int count = 0;
boolean[] visited = new boolean[N];
// number of swaps = cycle length - 1
for (int i = 0; i < N; i++) {
// If element is at correct position
if (copy[i].i == i || visited[i])
continue;
else {
// Cycle
int size = 0;
int index = i;
while (!visited[index]) {
visited[index] = true;
index = copy[index].i;
size++;
}
count += size - 1;
}
}
return count;
}
}