Alice and Bob take turns playing a game, with Alice starting first.
Initially, there are n stones in a pile. On each player's turn, that player makes a move consisting of removing any non-zero square number of stones in the pile.
Also, if a player cannot make a move, he/she loses the game.
Given a positive integer n. Return True if and only if Alice wins the game otherwise return False, assuming both players play optimally.
Example 1:
Input: n = 1
Output: true
Explanation: Alice can remove 1 stone winning the game because Bob doesn't have any moves.
Example 2:
Input: n = 2
Output: false
Explanation: Alice can only remove 1 stone, after that Bob removes the last one winning the game (2 -> 1 -> 0).
Example 3:
Input: n = 4
Output: true
Explanation: n is already a perfect square, Alice can win with one move, removing 4 stones (4 -> 0).
Example 4:
Input: n = 7
Output: false
Explanation: Alice can't win the game if Bob plays optimally.
If Alice starts removing 4 stones, Bob will remove 1 stone then Alice should remove only 1 stone and finally Bob removes the last one (7 -> 3 -> 2 -> 1 -> 0).
If Alice starts removing 1 stone, Bob will remove 4 stones then Alice only can remove 1 stone and finally Bob removes the last one (7 -> 6 -> 2 -> 1 -> 0).
Example 5:
Input: n = 17
Output: false
Explanation: Alice can't win the game if Bob plays optimally.
Constraints:
1 <= n <= 10^5
classSolution {Boolean[][] dp;// O(N*Root(N))publicbooleanwinnerSquareGame(int n) { dp =newBoolean[n +1][2];returnhelper(n,0); }publicbooleanhelper(int n,int player) {if (n ==0)returnfalse;if (dp[n][player] !=null)return dp[n][player];boolean ans =false;for (int i =1; i * i <= n; i++) { ans = ans ||!(helper(n - i * i,1- player));if (ans)break; } dp[n][player] = ans;return ans; }}