Given a m * n matrix mat and an integer K, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for i - K <= r <= i + K, j - K <= c <= j + K, and (r, c) is a valid position in the matrix.
Example 1:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]
Example 2:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n, K <= 100
1 <= mat[i][j] <= 100
classSolution {publicint[][] matrixBlockSum(int[][] mat,int K) {int m =mat.length, n = mat[0].length;int prefixSum[][] =newint[m][n];for (int i =0; i < m; i++) {int sum =0;for (int j =0; j < n; j++) { sum += mat[i][j];if (i ==0) prefixSum[i][j] = sum;else prefixSum[i][j] = sum + prefixSum[i -1][j]; } }int[][] ans =newint[m][n];for (int i =0; i < m; i++) {for (int j =0; j < n; j++) {int rUP = i + K, cUP = j + K;if (rUP >= m) rUP = m -1;if (cUP >= n) cUP = n -1; ans[i][j] = prefixSum[rUP][cUP];int r = i - K -1;int c = j - K -1;if (r <0&& c <0)continue;elseif (r <0) ans[i][j] = ans[i][j] - prefixSum[rUP][c];elseif (c <0) ans[i][j] = ans[i][j] - prefixSum[r][cUP];else ans[i][j] = ans[i][j] - prefixSum[rUP][c] - prefixSum[r][cUP] + prefixSum[r][c]; } }return ans; }}