Maximum Product of Splitted Binary Tree
Given a binary tree root
. Split the binary tree into two subtrees by removing 1 edge such that the product of the sums of the subtrees are maximized.
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:

Input: root = [1,2,3,4,5,6]
Output: 110
Explanation: Remove the red edge and get 2 binary trees with sum 11 and 10. Their product is 110 (11*10)
Example 2:

Input: root = [1,null,2,3,4,null,null,5,6]
Output: 90
Explanation: Remove the red edge and get 2 binary trees with sum 15 and 6.Their product is 90 (15*6)
Example 3:
Input: root = [2,3,9,10,7,8,6,5,4,11,1]
Output: 1025
Example 4:
Input: root = [1,1]
Output: 1
Constraints:
Each tree has at most
50000
nodes and at least2
nodes.Each node's value is between
[1, 10000]
.
class Solution {
long sum, maxProd, mod = 1_000_000_007;
public void DFS(TreeNode root) {
if (root == null)
return;
sum += (long) root.val;
DFS(root.left);
DFS(root.right);
}
public long checkMax(TreeNode root) {
if (root == null)
return 0L;
long treeSum = root.val;
treeSum += checkMax(root.left);
treeSum += checkMax(root.right);
maxProd = Math.max(maxProd, treeSum * (sum - treeSum));
return treeSum;
}
public int maxProduct(TreeNode root) {
sum = maxProd = 0;
DFS(root);
long rootProd = checkMax(root);
return (int) (maxProd % mod);
}
}
Last updated