You have n binary tree nodes numbered from 0 to n - 1 where node i has two children leftChild[i] and rightChild[i], return true if and only if all the given nodes form exactly one valid binary tree.
If node i has no left child then leftChild[i] will equal -1, similarly for the right child.
Note that the nodes have no values and that we only use the node numbers in this problem.
class Solution {
public boolean validateBinaryTreeNodes(int n, int[] leftChild, int[] rightChild) {
int[] parent = new int[n];
for (int i = 0; i < n; i++)
parent[i] = i;
for (int i = 0; i < n; i++) {
// Things taken care of: Cycles
if (leftChild[i] != -1)
if (union(parent, i, leftChild[i]))
return false;
if (rightChild[i] != -1)
if (union(parent, i, rightChild[i]))
return false;
}
// For taking care of multiple heads
int count = 0;
for (int i = 0; i < n; i++)
if (parent[i] == i)
count++;
return count == 1;
}
public boolean union(int[] parent, int node1, int node2) {
int p1 = find(parent, node1);
int p2 = find(parent, node2);
if (p1 == p2)
return true;
parent[p1] = p2;
return false;
}
public int find(int[] parent, int node) {
if (node != parent[node])
parent[node] = find(parent, parent[node]);
return parent[node];
}
}